A decay of the ultra-high-energy neutrino $u_e \rightarrow e^- W^+$ in a magnetic field and its influence on the shape of the neutrino spectrum

Alexander Kuznetsov

Yaroslavl State (P.G. Demidov) University, Division of Theoretical Physics

June 11, 2010

A. Kuznetsov, N. Mikheev, A. Serghienko Neutrino decay $\nu_{e} \rightarrow e^{-}W^{+}$ in magnetic field

Outline

1 The neutrino self-energy operator in magnetic field

2 The neutrino decay $u_e
ightarrow e^- W^+$ in an external field

3 The neutrino energy cutoff in a strong magnetic field

The neutrino self-energy operator in magnetic field

The most important achievement of the present-day neutrino physics: solving the solar-neutrino puzzle.

A problem of studying possible effects of an active environment on the neutrino dispersion properties becomes quite important.

A kind of external active medium: the strong magnetic field. The natural scale for the field strength exists: the critical value $B_e = m_e^2/e \simeq 4.41 \times 10^{13} \,\mathrm{G}.$

(D) (A) (A) (A)

The neutrino self-energy operator in magnetic field

The neutrino self-energy operator $\Sigma(p)$ is defined in terms of the invariant amplitude for the transition $\nu_e \rightarrow \nu_e$:

$$\mathcal{M}(\nu_e \rightarrow \nu_e) = - \left[\bar{\nu}_e(p) \Sigma(p) \nu_e(p) \right].$$

The operator $\Sigma(p)$ defines the neutrino dispersion relation.

The additional neutrino energy in an external magnetic field is:

$$\Delta E = -\frac{1}{2E} \mathcal{M}(\nu_e \to \nu_e).$$

The neutrino self-energy operator in magnetic field

Calculations of the neutrino dispersion relation in external magnetic fields have a long history.

- G. McKeon, 1981
- A. Borisov, V. Zhukovskiĭ, A. Kurilin and A. Ternov, 1985
- A. Erdas and G. Feldman, 1990
- A. Erdas and M. Lissia, 2003
- A. K., N. Mikheev, G. Raffelt and L. Vassilevskaya, 2006
- A. K. and N. Mikheev, 2007
- K. Bhattacharya and S. Sahu, 2009
- A. Erdas, 2009

1010 - 2010

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

The neutrino self-energy operator in magnetic field

Different regions of the parameter values were considered:

- a weak field case ($eB \ll m_e^2$);
- a moderately strong field case $(m_e^2 \ll eB \ll m_W^2)$;
- the neutrino transverse (to B) momentum p_{\perp} is rather high, e.g. $p_{\perp} \gtrsim m_W$ or $p_{\perp} \gg m_W$, while the field strength is not too high, $eB \ll m_e^2$: the crossed-field approximation.

But the list is not comprehensive. And some results contradict to each other.

1010 - 2010

(D) (A) (A) (A)

The neutrino self-energy operator in magnetic field

K. Bhattacharya and S. Sahu, 2009, made an attempt of reinvestigation the width of the process $\nu \rightarrow e^- W^+$, which is defined by Im ΔE , in the crossed field approximation, and obtained the result different from A. Erdas and M. Lissia, 2003.

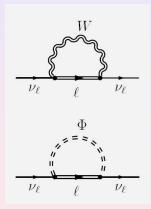
(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

The neutrino self-energy operator in magnetic field

Another region of the physical parameter values: high neutrino transverse momenta, and high magnetic field strength. The crossed-field approximation is not valid.

A possibility of detecting cosmic neutrinos of ultrahigh energy, $E \gtrsim 10^{15}$ eV is discussed (*B. Zhang e.a., 2003; Q. Luo, 2005; K. loka e.a., 2005*), originated from magnetars, the pulsars with superstrong magnetic fields ($B \sim 10^{15}$ G).

The emission of neutrinos having such energies cannot be adequately described without taking account of their interaction with the strong magnetic field of a magnetar.



1010

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

The neutrino self-energy operator in magnetic field

Feynman diagrams representing the magnetic-field-induced contribution to the neutrino self-energy operator in the Feynman gauge. Double lines correspond to the exact propagators for the charged lepton, the W boson, and the nonphysical scalar charged Φ boson in an external 1010 magnetic field.

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

The neutrino decay $\nu_e \rightarrow e^- W^+$ in magnetic field

The neutrino decay width:

$$w(\nu_e \rightarrow e^- W^+) = -2 \operatorname{Im} \Delta E = \frac{1}{E} \operatorname{Im} \mathcal{M}(\nu_e \rightarrow \nu_e).$$

In the crossed field approximation, the width is expressed in terms of the dynamical field parameter χ and the lepton mass parameter λ :

$$\chi = \frac{eB \ p_{\perp}}{m_W^3} , \qquad \lambda = \frac{m_e^2}{m_W^2} .$$

A. Kuznetsov, N. Mikheev, A. Serghienko Neutrino decay $\nu_e \rightarrow e^- W^+$ in magnetic field

The neutrino decay $\nu_e \rightarrow e^- W^+$ in magnetic field

A general expression for the decay width in the crossed field approximation (A. K. and N. Mikheev, 2007)

$$w(\nu_e \to e^- W^+) = rac{\sqrt{2} \, G_{
m F} \, m_W^4}{12\sqrt{3} \, \pi^2 \, E} \int\limits_0^1 rac{{
m d}z}{z(1-z)^2} \, K_{2/3}(U)$$

$$imes \left[z+\lambda\left(1-z
ight)
ight]\left[2(1+z)(2+z)+\lambda\left(1-z
ight)(2-z)
ight],$$

where $K_{2/3}(U)$ is the modified Bessel function,

$$U = \frac{2}{3\chi} \frac{[z + \lambda (1 - z)]^{3/2}}{z(1 - z)}$$

1010 - 2010

The neutrino decay $\nu_e \rightarrow e^- W^+$ in magnetic field

In the limit $\chi, \lambda \ll 1$, the result can be expressed in terms of the modified dynamical field parameter only:

$$\xi = rac{\chi}{\sqrt{\lambda}} = rac{eB \ p_\perp}{m_e \ m_W^2} \, .$$

The decay width, in agreement with A. Erdas and M. Lissia, 2003:

$$w(\nu \to e^- W^+) = \frac{\sqrt{2} G_{\rm F}}{3\pi} \frac{(eB \ p_\perp)^2}{m_W^2 E} \left(1 + \frac{\sqrt{3}}{\xi}\right) \exp\left(-\frac{\sqrt{3}}{\xi}\right)$$

A. Kuznetsov, N. Mikheev, A. Serghienko Neutrino decay $\nu_e \rightarrow e^- W^+$ in magnetic field

The neutrino decay $u_e \rightarrow e^- W^+$ in magnetic field

The range for the $\xi = eB \ p_{\perp}/(m_e \ m_W^2)$ parameter appears to be rather large, $0 < \xi \ll m_W/m_e \simeq 1.6 \times 10^5$.

In the limit $\xi \ll 1$ the result by *A. Borisov e.a., 1985,* is reproduced.

The result by K. Bhattacharya and S. Sahu, 2009, is incorrect.

The most possible reason: they used the W boson propagator expanded over the field tensor $F^{\mu\nu}$ to the linear terms, while the quadratic terms are also essential.

The neutrino decay $\nu_e \rightarrow e^- W^+$ in magnetic field

In the field of the magnetar scale, $\sim 10^{14} - 10^{15}$ G, the crossed-field approximation is inapplicable. We use the hierarchy $p_{\perp}^2 \gg m_W^2 \gg eB \gg m_e^2$, neglecting the electron mass as the smallest parameter. For the process width we obtain:

$$w(\nu \to e^- W^+) = rac{G_{
m F} \, (eB)^{3/2} \, \,
ho_\perp}{\pi \sqrt{2\pi} \, E} \, \Phi(\eta) \, ,$$

where $\Phi(\eta)$ is the function depending on the parameter η only:

$$\eta = \frac{4 \ eBp_{\perp}^2}{m_W^4}$$

1010 - 2010

The neutrino decay $\nu_e \rightarrow e^- W^+$ in magnetic field

The function $\Phi(\eta)$ is rather cumbersome in the general case. It can be essentially simplified at large and small values of the argument. In the limit $\eta \gg 1$ one obtains:

$$\Phi(\eta\gg1)\simeqrac{1}{3}\,\sqrt{\pi(\eta-0.3)}\,,$$

and the error is less than 1 % for $\eta > 10$.

In the other limit $\eta \ll 1$ one obtains

$$\Phi(\eta \ll 1) \simeq \exp\left(-rac{1}{\eta}
ight) \left(1-rac{1}{2}\eta+rac{3}{4}\eta^2
ight).$$

1010 - 2010

and the error is less than 1 % for $\eta <$ 0.5.

The neutrino energy cutoff in a strong magnetic field

An upper limit exists on the energy spectrum of neutrinos propagating in a strong magnetic field.

If the neutrino mean free path $\lambda = 1/w$ is much less than the typical field size R (of the region with the strong magnetic field, $R \sim 10$ km), all the neutrinos are decaying in such the field.

For $\lambda = 1 \text{ km} \ll R$, the cutoff energies E_c can be found for the neutrino spectrum, depending on the magnetic field strength.

Two limiting cases: i) relatively weak field, $B \simeq 0.1B_e$; ii) relatively strong field, $B \simeq 10B_e$.

1010 - 2010

(D) (A) (A) (A)

The neutrino energy cutoff vs the magnetic field strength

i) In the relatively weak field limit, $B \simeq 0.1 B_e \simeq 4 \times 10^{12}$ G, the neutrino mean free path is:

$$\lambda \simeq \frac{4.9 \,\mathrm{m}}{B_{0.1} \,\sin\theta} \,\exp\left(\frac{219}{B_{0.1} \,E_{15} \,\sin\theta}\right),$$

where $B_{0.1} = B/(0.1B_e)$, $E_{15} = E/(10^{15} \text{eV})$.

The cutoff energy corresponding to $\lambda = 1$ km, at $B_{0.1} = 1$, $\theta = \pi/2$, is

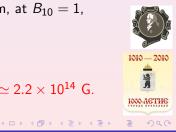
$$E_c \simeq 0.4 \times 10^{17} \mathrm{eV}$$
.

1010 - 2010

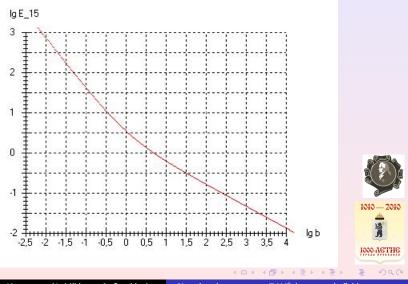
The neutrino energy cutoff vs the magnetic field strength

ii) In the relatively strong field limit, $B \simeq 10B_e \simeq 4 \times 10^{14}$ G, the neutrino mean free path is:

$$\lambda \simeq \frac{3.2 \,\mathrm{cm}}{B_{10}^{3/2} \sin \theta} \,\exp\left(\frac{4.0}{B_{10} \,E_{15}^2 \sin^2 \theta}\right),$$


where $B_{10} = B/(10B_e)$.

The cutoff energy corresponding to $\lambda = 1$ km, at $B_{10} = 1$, $\theta = \pi/2$, is


$$E_c\simeq 0.6 imes 10^{15}{
m eV}$$
 .

The cutoff energy $E_c = 10^{15} {\rm eV}$ at $B \simeq 5B_e \simeq 2.2 \times 10^{14} {\rm G}.$

Neutrino decay $\nu_e \rightarrow e^- W^+$ in magnetic field

The neutrino energy cutoff vs the magnetic field strength

A. Kuznetsov, N. Mikheev, A. Serghienko

Neutrino decay $\nu_e \rightarrow e^- W^+$ in magnetic field

Conclusions

 An influence of a strong external magnetic field on the neutrino self-energy operator is investigated.

Conclusions

- An influence of a strong external magnetic field on the neutrino self-energy operator is investigated.
- The width of the neutrino decay into the electron and *W* boson, and the mean free path of an ultra-high energy neutrino in a strong magnetic field are calculated.

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Conclusions

- An influence of a strong external magnetic field on the neutrino self-energy operator is investigated.
- The width of the neutrino decay into the electron and *W* boson, and the mean free path of an ultra-high energy neutrino in a strong magnetic field are calculated.
- An energy cutoff for neutrinos propagating in a strong field is defined.

The cutoff energy $E_c = 10^{15} {\rm eV}$ at $B \simeq 5 B_e \simeq 2.2 \times 10^{14}$ G.

1010 - 2010

Thank you for your attention!

A. Kuznetsov, N. Mikheev, A. Serghienko Neutrino decay $\nu_e \rightarrow e^- W^+$ in magnetic field