Нижнее ограничение на напряженность магнитного поля магнитара из анализа гигантских вспышек SGR

А.А. Гвоздев,

И.С. Огнев, Е.В. Осокина

ЯрГУ, Научно-образовательный центр «Квантовые процессы в астрофизической

среде»

НЕА-2010, Москва, 21-24 декабря 2010 г.

Гигантская вспышка SGR 1806-20 (данные INTEGRAL)

Основные характеристики Гигантских вспышек SGR

SGR		0526-66 5.03.1979	1900+14 27.08.1998	1806-20 27.12.2004	1627-41 18.06.1998
Расстояние, кПк		55	15	15	5.8
	Энергия E_{PC} , эрг		$\simeq 10^{40}$	$1 \cdot 10^{42}$	
PS	Время задержки Δt , сек		0.2	142	
	Длительность $ au_{PC}$, сек		0.5	1.0	
HS	Светимость в пике, эрг/сек	$3.6 \cdot 10^{44}$	$> 8.3 \cdot 10^{44}$	$3.5\cdot10^{47}$	
	Энергия E_{HS} , эрг	$1.6 \cdot 10^{44}$	$> 1.5 \cdot 10^{44}$	$2.3\cdot10^{46}$	
	Длительность $ au_{HS}$, сек	0.25	0.35	0.5	
	Энергия E_{LT} , эрг	$3.6 \cdot 10^{44}$	$1.2\cdot 10^{44}$	$1.3\cdot 10^{44}$	$3 \cdot 10^{42}$
LT	Длительность $ au_{LT}$, сек	200	400	380	0.6
QPO	Частоты $ u$, Гц		20 - 155	18 - 1840	
	Тип, время задержки , сек		Торсионные > 60	Торсионные Радиальные 50 — 200	

Магнитарная модель гигантской вспышки SGR

- Быстрая «раскрутка» (untwisting) внутреннего магнитного поля магнитара [Thompson, Duncan, 1995, 2001]
 - Тиринг-неустойчивость в «закрученной» магнитосфере [Lyutikov, 2003, 2006]

[Komissarov, Barkov, Lyutikov, 2007]

Стадия LT гигантской вспышки SGR не рассматривалась

Магнитарная модель Гигантской вспышки SGR на стадии LT (Thompson, Duncan, 1995, 2001)

$$b(z) = b_0 (1+z)^{\beta}$$
$$t(z) = t_0 (1+z)^{\gamma}$$
$$t = T/m \qquad b = eB/m^2$$
$$z = r/R_0(\tau) \qquad 0 \le \tau \le \tau_{LT}$$

- Потери энергии на нейтринное излучение пренебрежимо малы
- Гигантская вспышка SGR 1900+14 \implies оптимальная оценка $\beta < 0$ $\gamma = -1/2$

Процессы нейтринного остывания

- <u>Слабое магнитное поле</u> $T^2 \gg eB \gg m^2$
- Доминирует процесс аннигиляции

$$e^+ + e^- \rightarrow \nu_i + \tilde{\nu}_i \qquad (i = e, \mu, \tau)$$

• Типичное время нейтринного остывания

$$\frac{d}{dt} \left[\frac{11\pi^2}{60} T^4 \right] = -Q_A^{(0)}$$

$$\tau_{\nu}^{(0)} \simeq \frac{44 \,\pi^3}{175 \,\zeta(5) \,C_+^2} \,\frac{1}{G_F^2 \,T^5} \simeq 22 \, sec \,\left(\frac{1 \, MeV}{T}\right)^5$$

- Основная часть энергии горячей плазмы расходуется на излучение нейтрино.
- Такая плазма не может быть источником гигантской вспышки SGR.

Процессы нейтриного остывания (II)

- Сильное магнитное поле $eB \gg T^2 \gg m^2$
- Процесс аннигиляции $e^+ + e^- \xrightarrow{B} \nu_i + \tilde{\nu}_i$

В асимптотике n = n' = 0

• Типичное время нейтринного остывания

$$\frac{d}{dt} \left[\frac{eB}{12} T^2 \right] = -Q_A^{(B)}$$

$$\tau_{\nu}^{(B)} \simeq \frac{8\,\pi^3}{3\,\zeta(3)\,C_+^2} \,\frac{1}{G_F^2\,m^2\,T^3} \simeq 760\,\,sec\,\,\left(\frac{1\,\,MeV}{T}\right)^3$$

• Нейтринным излучением файербола из объема можно пренебречь [Thompson, Duncan, 1995, 2001] Процессы нейтриного остывания (III) $eB \gg T^2 \gg m^2$

• Процесс синхротронного излучения $e^{\mp} \rightarrow e^{\mp} + \nu_i + \tilde{\nu}_i$

$$\frac{Q_s}{Q_A^{(B)}} = \frac{\sqrt{2}}{3\pi^2\xi(3)} \left(1 - \frac{9}{4e}\right) t^2 x^{13/2} e^{-x}$$

[Каминкер, Яковлев, 1993]

$$x = \sqrt{2eB/t^2} \qquad t = T/m$$

Область применимости $2 \ll x \ll 22t$ $4.4 \cdot 10^{13}G \times t^2 \ll B \ll 10^{16}G \times t^4$

$$x_{max} = 13/2$$
 $Q_S/Q_A^{(B)}{}_{max} = 3.5 t^2$

при $T = 1 MeV B_{max} \simeq 3.7 \cdot 10^{15} G$

- Процесс синхротронного излучения вносит значительный вклад в нейтринные потери, сравнимый с вкладом процесса аннигиляции
- Реальные нейтринные светимости в этих процессах существенно превышают асимптотические
- В пределе сильного магнитного поля <u>нельзя</u> пренебрегать нейтринными потерями плазмы из объема файербола

Моделирование нейтринного излучения на стадии LT

$$b(z) = b_0 (1+z)^{\beta}$$
$$t(z) = t_0 (1+z)^{\gamma}$$
$$t = T/m \qquad b = eB/m^2$$
$$z = r/R_0$$

Потерями энергии на фотонное излучение пренебрегается

Оценка минимального магнитного поля из анализа потерь энергии на нейтринное излучение

Область плазмы, излучающей нейтрино и фотоны – часть шара радиуса R_0 , заполненная сильно замагниченной плазмой

Уравнения энергобаланса: $E_{tot} = \eta E_{LT} = 2\pi R_0^3 \int_0^1 \left(U_{e^{\pm}}(z) + U_{\gamma}(z) \right) z^2 dz$ $E_{\nu} = (\eta - 1) E_{LT} = 2\pi R_0^3 \tau_{LT} \int_0^1 Q_{\nu}(z) z^2 dz$

 au_{LT} – время фотонного излучения на стадии LT

 $_{E_{LT}}$ – энергия, излучаемая в γ –квантах на стадии LT

*E*_{tot} - полная энергия плазмы

 $U_{e^{\pm}}(z) + U_{\gamma}(z)$ - локальная плотность энергии e^+e^- - плазмы и γ -квантов

 $Q_{\nu}(z)$ - локальная нейтринная светимость из единицы объема в единицу времени в синхротронном процессе и процессе аннигиляции

 η - эффективность энерговыделения

При заданных наблюдательных данных E_{LT} , τ_{LT} , параметрах β , γ можно вычислить t_0 , b_0 как функции от η

Аналитическое решение в асимптотике сильного магнитного поля

$$\gamma = -1/2$$
 $\beta = -3$ $SGR \ 0526 - 66 : E_{44} = 3.6, \ \tau_{100} = 2.0$
 $SGR \ 1806 - 20 : E_{44} = 1.3, \ \tau_{100} = 3.8$

$$t_0(\eta) \simeq 4.4 \left(1 - 0.6\gamma\right) \frac{1}{\tau_{100}^{1/3}} \left(\frac{\eta - 1}{\eta}\right)^{1/3}, \quad b_0(\eta) \simeq 2.1 \left(1 - 0.5\beta + 0.3\beta^2\right) \frac{E_{44}\tau_{100}^{2/3}}{R_{10}^3} \frac{\eta^{5/3}}{(\eta - 1)^{2/3}}$$

где $E_{44} = E_{LT}/10^{44} erg$, $\tau_{100} = \tau_{LT}/100 \, sec$, $R_{10} = R_0/10 km$

Моделирование нейтринного остывания SGR 0526-66 и SGR 1806-20

• Экстраполяционные формулы

 Q_A [Kaminker et al, 1992], Q_S [Каминкер, Яковлев, 1993] Справедливы при любой степени релятивизма невырожденной плазмы и при произвольной напряженности магнитного поля

• Зависимость температуры t_0 в центре файербола от параметра η при $R_0 = 10 \, km, \ \beta = -3$ сплошные линии соответствуют $\gamma = -1/2$, штриховые $\gamma = 0$, штрих-пунктирные – аналитическому решению при $\gamma = -1/2$

Моделирование нейтринного остывания (II)

• Зависимость напряженности магнитного поля b_0 в центре файербола от параметра η при $R_0 = 10 \, km$ и $\beta = -3$ Сплошные линии соответствуют $\gamma = -1/2$, штриховые $\gamma = 0$ штрих-пунктирные – аналитическому решению при $\gamma = -1/2$

Как и в случае аналитического решения, функция b₀(η) имеет глобальный минимум. Значение b₀^{min} сильно зависит от радиуса файербола R₀.

Моделирование нейтринного остывания (III)

Зависимость минимальной напряженности магнитного поля b_0^{min} от радиуса R_0 шаровой области, занятой плазмой, для вспышек SGR 0526-66 и SGR 1806-20. Жирные точки соответствуют расчетным значениям b_0^{min} при $R_{10} = 5, 10, 15$ и $\gamma = -1/2, \gamma = 0$. Сплошные линии соответствуют аппроксимации этой зависимости при $\gamma = -1/2$ пунктирные - при $\gamma = 0$.

Моделирование нейтринного остывания (IV)

$B_0^{min}\,$ - Минимальная напряженность магнитного поля $B_{MD}\,$ - верхнее ограничение из анализа магнитодипольных потерь магнитара

SGR 0526-66:
$$B_0^{(min)} \simeq 2 R_{10}^{-3} \times 10^{16} \,\mathrm{G}, \quad B_{MD} \simeq 2 \widetilde{R}_{10}^{-2} \times 10^{15} \,\mathrm{G}$$

SGR 1806-20: $B_0^{(min)} \simeq R_{10}^{-3} \times 10^{16} \,\mathrm{G}, \quad B_{MD} \simeq (2-6) \,\widetilde{R}_{10}^{-2} \times 10^{15} \,\mathrm{G}$
SGR 1900+14: $B_0^{(min)} \simeq R_{10}^{-3} \times 10^{16} \,\mathrm{G}, \quad B_{MD} \simeq (2-3) \,\widetilde{R}_{10}^{-2} \times 10^{15} \,\mathrm{G}$
 $R_{10} = R_0/10 \, km \qquad \widetilde{R}_{10} = R_{NS}/10 \, km$

• При
$$R_0 \approx R_{NS}$$
 B_0^{min} и B_{MD} не согласуются.

Осцилляции рентгеновского излучения с периодом вращения SGR (гигантская вспышка SGR 1806-20)

Наблюдательные данные эксперимента Konus-Wind (Mazets et al., 2005)

Fig. 1.— Time history of the 2004 December 27 giant outburst recorded by the Konus-Wind detector in three energy windows G1 (16.5–65 keV), G2 (65–280 keV), and G3 (280– 1060 keV), and the hardness ratio G2/G1. The moderate initial count rate growth to 10^{2} – 10^{3} counts s⁻¹ transforms rapidly to an avalanche-type rise to levels > 5 × 10⁷ counts s⁻¹, which drives the detector to deep saturation for a time $\Delta T \simeq 0.5$ s. After the initial pulse intensity has dropped to ~ 10^{6} counts s⁻¹, the detector resumes operation to record the burst tail.

Заключение

- Магнитарная модель гигантской вспышки SGR (Thompson, Duncan, 1995, 2001) при учете нейтринных потерь непригодна для описания наблюдаемого излучения на стадии LT.
- Интересно рассмотреть стадию LT в модели "Twisted magnetosphere" с учетом потерь на нейтринное излучение.