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Abstract

The neutrino dispersion in the charge symmetric magnetized plasma is investigated. We
have studied the plasma contribution into the additional energy of neutrino and obtained
the simple expression for it. We consider in detail the neutrino self-energy under physical
conditions of weak field, moderate field and strong field limits. It is shown that our result
for neutrino dispersion in moderate magnetic field differ substantially from the previous one
in the literature.

1 Introduction.

The investigations of neutrino physics in an active medium are the subject of great interest
today. The one of the topical problem in current researches is the influence of an external
magnetic field and plasma on the neutrino dispersion relation.

It this paper we analyse the neutrino dispersion properties in an active medium consisting of
magnetic field and plasma. The investigations of such type are based on calculation of neutrino
self-energy operator Σ(p). This operator can be defined in term of the invariant amplitude of
the neutrino transition ν → ν, by the relation:

M(ν → ν) = − ν̄(p)Σ(p) ν(p), (1)

where pµ is the neutrino four-momentum.
Using the expression (1), one obtains for the additional neutrino energy in magnetized

plasma 1:

∆E =
1

4E
Sp {((pγ) + mν) (1 − (sγ) γ5)Σ(p)} , (2)

where E is the neutrino energy in vacuum, mµ is the neutrino mass, sµ is the neutrino spin
four-vector, γα are the Dirac matrices in the standard presentation. The Lorentz indexes of four-
vectors and tensors within parenthesis are contracted consecutively, for example, (pγ) = pµγµ.

There are several parametrization for general structure of the operator Σ(p). In the presence
of homogeneous magnetized medium the operator Σ(p) contains three independent structures.
In this case it is convenient to express Σ(p) as

Σ(p) = {a (pγ) + b (uγ) + c (pϕ̃γ)} L. (3)

Here a, b, c are the numerical coefficients, uµ is the four-vector of medium velocity, ϕ̃αβ =
F̃αβ/B is the dimensionless dual tensor of the magnetic field, B is the absolute value of the
magnetic field strength, L = (1 − γ5)/2 is the left-handed projection operator.
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1We use natural units in which c = ~ = 1.
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On this parametrization the coefficients a, b, c have a simple physical interpretation. Really,
performing calculation of the trace in eq.(3) with Σ(p) in the form (2), one can obtained for the
neutrino self-energy

∆E = b
(1 − (~v~ξ))

2
− c

mν

2E
(pϕ̃s). (4)

where ~v is the neutrino velocity, ~ξ is the twice vector of average spin of neutrino.
It is seen that the additional energy in magnetized plasma for massless left-handed neutrino

in fact depends on the parameter b only,

∆E = b.

In the case of massive neutrino the second term in (4) corresponds to the additional energy
caused by a neutrino magnetic moment µν ,

∆Eµν
= −µν B

E
(pϕ̃s), µν =

cmν

2B
.

So, one can speak that parameter c determines the additional neutrino magnetic moment in
the magnetized plasma.

The modification of the neutrino dispersion relation in a magnetized plasma have a long
history, see for example [1]-[5]. In particular, the dispersion relation of neutrino 2 in charge
symmetric plasma under physical conditions

m2
W � T 2, eB � m2

e, eB ≤ T 2 (5)

is well known

∆E

|~p| =

√
2GF

3

[

−7π2 T 4

15

(

1

m2
Z

+
2

m2
W

)

+
T 2 eB

m2
W

cos φ +
(eB)2

2π2 m2
W

ln

(

T 2

m2
e

)

sin2 φ

]

. (6)

Here ~p is the neutrino momentum, φ is the angle between magnetic field direction and vector
~p, T is the plasma temperature.

The first term in (6) is the pure plasma contribution [1], while the second [2] and third [3]
terms in brackets are caused by the common influence of the plasma and magnetic field. As
one can see the term of the second order of the field contains the infrared divergence in the
massless electron limit. However, there is a good reason to think that this large logarithmic
factor ln(T 2/m2

e) can not arise under physical conditions (5), when the electron mass is the
smallest parameter of the task. Actually, under conditions (5) the contribution into neutrino
energy is determined by electrons and positrons on exited Landau levels with energy ωn =
√

k2
3

+ 2eBn + m2
e. One can see that in this case the electron mass squared can be neglected in

comparison to magnetic field. By this means, the availability of the logarithmic factor ln(T 2/m2
e)

in the (6) has come into question, so independent investigations of the neutrino dispersion in
magnetized medium it is required.

Further we study the additional neutrino energy for massless neutrino in the charge sym-
metric plasma with the presence of the magnetic field of arbitrary strength. As a special case
we consider the weak field, moderate field and strong field limits in more details.

2we consider the electron neutrino
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e−(±k)× e−(±k)×

ν(p) ν(p)
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ν(±k) × ν(±k)×

ν(p) ν(p)

Figure 1: Feynman diagrams for the plasma contribution into the neutrino self-energy operator.

2 The plasma contribution into neutrino self-energy operator

Σ(p).

In the case of the charge symmetric plasma the contribution into amplitude of neutrino
transition ν → ν in magnetized plasma derives from processes, shown in fig.1. It should be
noted that in the local limit the neutrino self-energy operator Σ(p) is zero [1]. Thus, there is a
need to take into account the momentum dependence of W,Z - boson propagators. The process
of neutrino transition via Z boson does not sensitive to influence of external magnetic field.
Thus, the contribution into operator Σ(p) from this process can be extracted from paper [1].

The amplitude of neutrino forward scattering on all plasma electrons and positrons can be
immediately obtained from the Lagrangian of νe interaction with W-boson

L =
g

2
√

2
(ē γα (1 − γ5) ν ) Wα +

g

2
√

2
(ν̄e γα (1 − γ5) e ) W ∗

α. (7)

Omitting the details of calculations, the general expression for the neutrino self-energy
caused by the neutrino forward scattering on plasma electrons can be written as

∆E

|~p| = −2
√

2GF eB

π2 m2
W

+∞
∫

−∞

dk3 f(ωn)

ωn
× (8)

×
( ′
∑

n=0

(ω2
n + eBn + cos2 φ (k2

3 − eBn)) − δn0

2
cosφ (k2

3 + ω2
n)

)

.

Here ωn =
√

k2
3

+ 2eBn + m2
e and k3 are the electron energy and z-component 3 of electron

momentum correspondingly, n is the Landau level number, φ s the angle between magnetic
field direction and neutrino momentum ~p, f(ωn) is the electron distribution function, f(ωn) =
[exp(ωn/T ) − 1]−1, the sum is defined as

′
∑

n=0

F (n) =
1

2
F (n = 0) +

∞
∑

n=1

F (n).

The integral and sum in eq. (8) can be calculated under some physical conditions:

• the limit of weak magnetic field, when the magnetic field strength is the smallest physical
parameter

T 2 � m2
e � eB. (9)

3the magnetic field is directed along the z-axis
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The result of calculations for the plasma contribution into neutrino self-energy in this
limit is

∆E

|~p | =

√
2 GF

3m2
W

[

−7π2 T 4

15

(

2 +
m2

W

m2
Z

)

+ T 2 eB cos φ+ (10)

+
(eB)2

2π2

{

sin2 φ

(

ln

(

T 2

m2
e

)

+ 0, 635

)

− 1

}]

.

As one can see the expression (10) contains the logarithmic factor with me, but under
conditions considered (9) the electron mass is not the smallest parameter of task. So the
electron mass can not be tend to zero at nonzero magnetic field B.

• the moderate magnetic field, when the magnetic field being relatively weak in comparison
with plasma temperature, is simultaneously strong enough on the scale of electron mass
squared

T 2 � eB � m2
e. (11)

Under conditions (11) plasma electrons and positrons occupy highest Landau levels. In
this case for neutrino energy one can obtained

∆E

|~p | =

√
2 GF

3m2
W

[

−7π2 T 4

15

(

2 +
m2

W

m2
Z

)

+ T 2 eB cos φ+ (12)

+
(eB)2

2π2

{

sin2 φ

(

ln

(

T 2

eB

)

+ 2, 93

)

− 1

}]

.

Our calculations show, that under conditions (11) the additional neutrino energy does not
contain the infrared divergence in the limit me → 0 in contrast [3].

• the strong magnetic field limit, when from two components of active medium the field
component dominates

eB � T 2 � m2
e. (13)

Under conditions (11) the most part of plasma electrons and positrons occupy the ground
Landau level. The result for the additional neutrino energy in this limit has the form:

∆E

|~p | = −
√

2GF

3m2
W

[

7π2 T 4 m2
W

15m2
Z

+
T 2 eB

2
(1 − cos φ)2+ (14)

+3 (eB)2
(

2

π

)3/2 ( T 2

2eB

)1/4

(3 − cos2 φ) e−
√

2eB/T

]

.

Here the second term corresponds to the contributions of ground Landau level, while the
third term is caused by the first Landau level.

3 Conclusion.

We have studied the neutrino dispersion in the charge symmetric plasma with the presence
of a constant magnetic field. The most general expression in simple analytic form for the plasma
contribution into the neutrino self-energy was obtained. In particular, we have considered the
physical conditions, corresponding to the weak field and moderate field, when plasma electrons
and positrons occupy the excited Landau levels. The strong magnetic field limit, when plasma
electrons and positrons mainly occupy the lowest Landau level, is investigated also.
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It is shown that additional neutrino energy in the limit of moderate field, T 2 � eB � m2
e,

does not coincide with previous result in paper [3] under the same physical conditions and does
not contain the infrared divergence in the limit me → 0 in contrast to [3].
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