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Abstract

The recent studies [1] is reported of the neutrino photoproduction
on nuclei, γ+Ze → Ze+γ+ν+ν̄, in a strong magnetic field. It is shown
that the catalyzing influence of the field on the process decreases es-
sentially because of the modification of the photon dispersion prop-
erties in a strong magnetic field. Therefore, at any field magnitude,
neutrino photoproduction cannot compete with the URCA processes.
This conclusion contradicts a recent statement in the literature [2].

1 Introduction

Strong magnetic fields which could be generated in the astrophysical cata-
clysms like a supernova explosion or a coalescence of neutron stars, make an
active influence on quantum processes, thus allowing or enhancing the tran-
sitions which are forbidden or strongly suppressed in vacuum. However, the
magnetic field influences significantly the quantum processes only in the case
when it is strong enough. There exists a natural scale for the field strength
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which is the so-called critical value Be = m2
e/e ' 4.41·1013 G (we use natural

units in which c = ~ = 1, hereafter e is the elementary charge).
There exist arguments that field of such and essentially greater scale can

appear in astrophysical objects. Thus, a class of stars exists, the so-called
magnetars, which are neutron stars with magnetic fields ∼ 4 · 1014 G [3, 4].
Models of astrophysical processes and objects are discussed, where magnetic
fields of the order 1017 − 1018 G can be generated [5–8]. Thereby, physics of
quantum processes in strong external fields presents itself as an interesting
and important direction of studies, both from a conceptual standpoint, and
in light of possible astrophysical implications.

Among others, the set of quantum processes is very interesting where only
electrically neutral particles, such as neutrinos and photons, are presented
in the initial and final states. The external field influence on these loop
processes is provided, first, by the sensitivity of the charged virtual fermion
to the field, and the electron plays the main role here as the particle with the
maximal specific charge, e/me. Secondly, strong magnetic field essentially
influences the dispersion properties of photons, and consequently it changes
their kinematics.

In the recent paper [2] a contribution was studied, in particular, of the
loop process of the neutrino pair photoproduction on nucleus

γ + Ze → Ze + γ + ν + ν̄ (1)

in strong external magnetic field, into the star cooling. An important con-
clusion was made there, that a contribution of this process could compete
with the contribution of URCA - processes. Thereby, the process (1) should
be taken into account in the description of a cooling of strongly magnetized
neutron star, as one more channel of neutrino energy losses.

Here, we present the result of a new study of the process of neutrino pair
photoproduction on nucleus, Fig. 1. We show that with the dispersion of a
photon in strong magnetic field taken into account, a catalizing influence of
the field on the process (1) vastly decreases. This effect was not considered
in Ref. [2] with the result that the contribution of the loop process turned
out to be overestimated in many orders of magnitude.
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Figure 1: The Feynman diagram for the neutrino pair photoproduction on nucleus
in a magnetic field.

2 The process γ + γ + γ → ν + ν̄

in a strong magnetic field

We start from this photon - neutrino process which is symmetric with respect
to the photon interchange. The crossed process having a physical meaning is
the photon - neutrino process γγ → νν̄γ, and the history of its investigations
is rather long. It was studied in vacuum by Van Hieu and Shabalin [9] and
by Dicus and Repko [10]. The process was studied in a strong magnetic field
(B & Be) in the paper [11].

The amplitude of the process in a strong field has the form

M = −8 e3 GF eB√
2π2 m6

e

(ε1ϕ̃k1) (ε2ϕ̃k2) (ε3ϕ̃k3) ×

× [CV (jϕ̃k4) + CA(jϕ̃ϕ̃k4)]I

(

k1

me
,

k2

me
,

k3

me

)

, (2)

where CV , CA are the vector and axial-vector constants of the effective ννee
Lagrangian,

CV = ±1/2 + 2 sin2 θW , CA = ±1/2, (3)

(here the upper signs correspond to νe, and the lower signs correspond to νµ

and ντ ); ε1,2,3 and k1,2,3 are the polarization 4-vectors and the momenta of
photons, jα = [ν̄(q1)γα(1+γ5)ν(−q2)] is the Fourier transform of the neutrino
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current, k4 = q1 + q2 is the neutrino pair momentum, ϕ̃αβ = F̃αβ/B is the
dimensionless dual tensor of external magnetic field, F̃αβ = 1

2
εαβµνFµν. The

tensor indices of four-vectors and tensors standing inside the parentheses are
contracted consecutively, for example (aϕ̃b) = aαϕ̃αβbβ.

The formfactor I
(

k1

me

, k2

me

, k3

me

)

has a complicated form of a triple integral

over the Feynman variables. In the case of low photon energies, ω1,2,3 � me,
the integral can be easily calculated:

I

(

k1

me
,

k2

me
,

k3

me

)

' 1

60
. (4)

In this case, the above amplitude corresponds to the effective local La-
grangian of the γγγνν̄ interaction:

Leff = − e3 GF eB

45
√

2π2 m6
e

(

∂Aα

∂xβ
ϕ̃αβ

)3

×

× ∂

∂xσ
[ν̄γρ(1 + γ5)ν] [CV ϕ̃ρσ + CA (ϕ̃ϕ̃)ρσ]. (5)

We note that γγγνν̄ interaction in the low-energy limit was studied earlier
by Loskutov and Skobelev [11], however, their Lagrangian has an extra factor
of 2.

The dimensional analysis of the amplitude with respect to a typical pho-
ton energy, |k1| ∼ |k2| ∼ |k3| ∼ ω, shows an essential distinction of the cases
of low energies (M ∼ ω5), and high energies, (M ∼ ω−3).

3 Photon dispersion and kinematics

in a strong magnetic field

In analyses of the photon processes in a strong magnetic field, the field in-
fluence on the photon dispersion properties is a crucial factor, and it has to
be taken into account. We remind that only photons of transversal polariza-
tion [13] participate in the processes in a strong magnetic field. For virtual
photon, instead of the propagator ∼ q−2, one should use the propagator with
the vacuum polarization in a magnetic field:

D(B)(q2
‖
, q2

⊥
) =

1

q2 − P (q2
‖)

, (6)
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here q2
‖

= q2
0 − q2

z , q2
⊥

= q2
x + q2

y, q2 = q2
‖
− q2

⊥
(the magnetic field is directed

along the z axis), P (q2
‖
) is the photon polarization operator in the field, which

has a rather simple form in a strong field, B � Be, and in an approximation
|q2

‖
| � m2

e [14]:

P (q2
‖) ' − α

3π

B

Be
q2
‖ . (7)

It is convenient to introduce a dimensionless parameter which defines the
field influence in expressions below:

β =
α

3π

B

Be
. (8)

For the field values 103 Be and 104 Be, the parameter β is 0.77 and 7.7 con-
sequently, so, it is not the small one.

Finally, taking q0 = 0 for a virtual photon coupled with a nucleus at rest,
one obtains the propagator:

D(B) ' − 1

q2
⊥ + (1 + β)q2

z

. (9)

On the other hand, real photons participating in the process are also under
the influence of a strong magnetic field, which leads to the renormalization
of the photon wave-functions:

εα −→
√
Z εα, (10)

where the renormalization factor Z takes the form

Z =

(

1 −
dP (q2

‖
)

dq2
‖

)−1

=
1

1 + β
. (11)

The kinematics of photons is also modified by the field. The photon dis-
persion equation k2 − P (k2

‖) = 0 can be rewritten to the form ω2 = k2(1 +
β cos2 θ)/(1 + β), and the element of the momentum space becomes

d3k = (1 + β) ω2dω dy dϕ, y = cos θ
√

1 + β/
√

1 + β cos2 θ,

where θ, ϕ are the polar and the azimuthal angles.
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4 The process of neutrino photoproduction

on nuclei

Using the effective local Lagrangian of the γγγνν̄ interaction, with the field
influence on the photon properties, and with the substitution of the photon
⊥ polarization vectors

ε(⊥)
α =

√
Z (ϕ̃k)α

√

k2
‖

, (12)

the amplitude for the process

γ + Ze → Ze + γ + ν + ν̄

can be presented in the form

M =
32παZ GF

5
√

2m4
e

β

1 + β

2mN qz

√

k2
1‖k

2
2‖

q2
⊥

+ (1 + β)q2
z

[CV (jϕ̃k4) + CA(jϕ̃ϕ̃k4)], (13)

where mN is the nucleus mass, q is the momentum transferred, qα = (0,q).
Our amplitude differs essentially from the amplitude obtained in the pa-

per [2], where the strong magnetic field influence on the photon dispersion
properties was not taken into account.

5 The neutrino emissivity

The neutrino emissivity is the energy carried out by neutrinos from unit
volume per unit time. It is defined in terms of the process amplitude (13) as
follows

Qν =
(2π)4nN

2mN

∫

|M|2 (ε1 + ε2) δ4(k1 − k2 − q1 − q2 − q) ×

× d3k1

(2π)32ω1
f(ω1)

d3k2

(2π)32ω2
[1 + f(ω2)] × (14)

× d3q1

(2π)32ε1

d3q2

(2π)32ε2

d3q

(2π)32mN
,

6



where nN is the nuclei density, ε1 and ε2 are the neutrino and antineutrino
energies, f(ω) = [exp(ω/T ) − 1]−1 is the density of the photon gas in equi-
librium at the temperature T . One obtains

Qν =
8 (2π)9

225
Z2 α2 G2

F m6
e nN

(

T

me

)14

J (β). (15)

The dependence of the value Qν on the field parameter β (8) is defined by
the function J (β) as follows

J (β) = β2

1
∫

−1

du (1 − u2)

1
∫

−1

dv (1 − v2)

1
∫

0

ds s3 (1 − s)8

1
∫

0

dr r2 ×

×
1

∫

−1

dx[u − sv − (1 − s)rx]2(1 − r2x2) × (16)

×
[

C2
V (1 − r2) + C2

Ar2(1 − x2)
]

2π
∫

0

dϕ1

2π

2π
∫

0

dϕ2

2π

1

[F (β)]2
,

F (β) = (1 + β)
{

1 − u2 + s2(1 − v2) − 2s
√

1 − u2
√

1 − v2 cos ϕ1+

+ [u − sv − (1 − s)rx]2
}

− 2
√

1 + β(1 − s)r
√

1 − x2 ×
×

[√
1 − u2 cos ϕ2 − s

√
1 − v2 cos(ϕ2 − ϕ1)

]

+

+ (1 − s2)r2(1 − x2). (17)

The constants C2
V = 0.93 and C2

A = 0.75 under the integral are summarized
over all channels of the neutrino production, νe, νµ, ντ .

The dependence of the function J(β) on the field parameter β is shown
in Fig. 2.

The upper bound for the value Qν in the asymptotically strong field is

Qν . 2.3 · 1027

(

T

me

)14 〈

Z2

A

〉 (

ρ

ρ0

)

erg

cm3 s
, (18)

where Z is the charge number and A is the mass number of a nucleus,
< Z2/A > means the averaging over all nuclei, ρ0 = 2.8 · 1014 g/cm3 is the
typical nuclear density, and ρ is the averaged density of a star.

7



���
	���������

�

�

�
��� ����� ���

�
��� ����� ���

 !

�

"

#

$

%

� " # $ % ���

Figure 2: The dependence of the function J(β) on the field parameter β (the
curve 1). The line 2 shows the asymptotics of the function at large values of β,
J(β) → 8 · 10−5. The curve 3 shows the dependence ∼ β2, which would take place
without taking account of the magnetic field influence on the photon dispersion.

The Eq. (18) should be compared with the neutrino emissivity via the
standard channel of the modified URCA process

Qν(URCA) ∼ 1027

(

T

me

)8 (

ρ

ρ0

)2/3
erg

cm3 s
. (19)

At first glance, these values for the emissivities could compete. However,
a big numerical factor in the neutrino photoproduction emissivity arises from
the integral over the initial photon energy ω1 (x = ω1/T )

∞
∫

0

x13 dx

ex − 1
= 13! ζ(14) =

(2π)14

24
' 6.2 · 109. (20)

It is obvious, that the integral (20) acquires its big value in the region of the
argument

x ∼ 10 ÷ 20, ω1 ∼ (10 ÷ 20) T.

Thus, as the amplitude of the neutrino photoproduction is obtained within
the approximation

ω . me,
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the above expression for the neutrino emissivity is true at the photon gas
temperatures

T . (1/10) me,

however, it is obviously incorrect at T ∼ me.
Consequently, the assumption that the factor (T/me)

14 could be taken of
the order unity [2], is wrong. Within the area of applicability one obtains

(T/me)
14 . 10−14.

In summary, the neutrino photoproduction on nuclei cannot compete with
URCA processes for any values of the magnetic field strength.
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